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1 SUMMARY
The objective of this research to develop an efficient and justifiable algorithm to geometrize a
given closed 3-manifold, and to show how its topologic characterization can be applied to complex
networks. Hamilton’s Ricci flow (RF) was developed in order to geometrize such 3-manifolds. The
geometrization theorem (GT) states that each prime 3-manifold is either geometric or its simple
pieces are geometric. The continuum approach is not numerically practical. Accordingly, we
developed a discrete piecewise linear (PL) version of Hamilton’s RF. It is the first dimensionally
agnostic generalization of RF for PL geometries. We refer to our approach as simplicial Ricci
flow (SRF). For a broad class of examples, the SRF equations reproduced the continuum RF. SRF
provides an efficient approach to the 3-manifold recognition problem. A Ph. D. student funded
under this effort (S. Ray) applied SRF to implement the 1916 Weyl isometric embedding problem.
His results are being used to develop a discrete quasi-local measure of congestion in networks –
a possible filtration parameter to guide network reconfiguration. We are currently developing an
efficient way of detecting and classifying singularity formation under SRF using the techniques of
persistent homology (PH). In this research we were guided by a quote:

”The theory of polyhedra and related geometrical methods are attractive not only in
their own right. They pave the way for the general theory of surfaces. Surely, it is
not always that we may infer a theorem for curved surfaces from a theorem about
polyhedra by passage to the limit. However, the theorems about polyhedra always
drive us to searching similar theorems about curved surfaces.” A. D. Alexandrov 1950

2 INTRODUCTION

Combinatorial Ricci flow (CRF) on 2-dimensional surfaces has been used successfully
over the past decade to solve many outstanding problems in fields spanning commu-
nications, medical imaging, computer vision and mathematics [1]. Any surface is
conformally equivalent to one of three geometric surfaces depending on its genus; a
sphere for genius 0, a plane for genus one and a hyperbola for genus two and greater –
a consequence of the Uniformization Theorem (UT). CRF elicits this decomposition
and thereby provides us with an efficiently-produced taxonomy for a surface. Armed
with the success of CRF in two dimensions, and recognizing that the taxonomy is
much finer in three dimensions (connected sum of prime manifolds from a set of eight
homogeneous geometries); it was the objective of this research to generalize this ap-
proach and to develop an efficient and justifiable method to geometrize a given closed
orientable 3-manifold. In particular we seek a unique and finite decomposition of the
3-manifold into a connected sum of prime geometries. Fortunately, Hamilton’s Ricci
flow (RF) was developed to elicit such a decomposition [2, 3, 4, 5, 6]. This was accom-
plished through a proof of Thurston’s geometrization conjecture (GC) by Perelman in
2003 [6, 7]. This can be done in a finite number of steps separated in time. In this
sense, the GC is a 3-dimensional generalization of the UT. Thurston’s GC states that
each prime 3-manifold is either geometric or its simple pieces are geometric. However,
this continuum mathematical approach is not numerically practical on such complex
topologies and geometries. Therefore, we approached a solution to our objective by
rigorously developing a discrete PL version of Hamilton’s Ricci flow for three and
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higher dimensions. We developed the first dimensionally agnostic generalization of
RF to piecewise linear simplicial spaces. We refer to our approach as simplicial Ricci
flow (SRF) [8]. As part of this effort, we tested this approach on a representative spec-
trum of 3-geometries undergoing SRF [9, 10].. In particular, we studied numerically,
(1) a 3-cylinder, (3) a 3-sphere at various resolutions, (3) Bianchi type IX geometry
with one degree of anisotropy, and (4) the double lobed neck pinch geometry of Knopf
et al. [11, 12] We demonstrated that each of our carefully-chosen examples numeri-
cally and reproduce the analogous continuum RF results [9, 10]. In the pinched-neck
3-geometry, we specifically demonstrated that the SRF equations developed singular-
ities for sufficiently pinched 3-geometries as in the continuum. We have developed
an approach (SRF) that provides an efficient way of distinguishing 3-manifolds. Most
recently, we showed analytically that the SRF equations converged to the continuum
RF equations for the neck-pinch 3-geometry [10]. In this analysis we also showed that
the error terms were explicitly second order and the error terms were bounded above
(i.e. the detonators of the higher order terms were strictly positive).

A significant finding in our research was numerical stiffness of the SRF equations [9].
We understood the origins of this problem and circumvented it in our simulations by
careful re-meshing of the 3-geometry. Nevertheless, this showed us the importance
of having a sophisticated manifold sampling algorithm incorporating both adaptive
meshing and re-meshing when needed. Our results are not unlike the difficulties en-
countered with CRF, and other finite element/volume codes. In these cases they need
to keep the internal angles of their triangulation between careful bounds – the sim-
plifies need to be fat in the sense of Withney’s fullness criteria. In our simulations
we were guided by two conditions when re-meshing, (1) we wanted the cells as fat as
possible so that the circumcenter of each cell lies in the interior of its cell, and (2) we
wanted all the deficit angles to be small ensuring that the cells would be large in lower
curvature regions and smaller in higher curvature regions. These, sometimes compet-
ing conditions, require sophisticated manifold sampling techniques involving spline
approximations to the tsimplicial surface. In the case of the neck-pinch geometry we
utilized cubic splines to re-mesh. This was necessary in order to evolve the the neck
pinch.

In order to efficiently identify singularity formation in SRF we are currently applying
the methods of persistent homology to a selection of two and three–dimensional ge-
ometries evolved by simplicial Ricci flow [13]. To implement persistent homology,
we constructed a triangular mesh for a sample of points. The scalar curvature along
the edges of the triangulation, computed as an average of scalar curvatures at the end-
points of the edges, serves as a filtration parameter at each time step. We analyzed the
results of the application of persistent homology to a two–dimensional rotational solid
that collapses and three–dimensional dumbbells that manifest neckpinch singularities
as presented in previous literature. We compared the appearance of critical geometric
phenomena in these models with the results of the application of persistent homol-
ogy and we concluded via various resolutions that persistent homology does indicate
geometric criticality.

One of our graduate students (S. Ray) applied SRF to solve an outstanding problem in
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numerical analysis – the 1916 Weyl isometric embedding problem [14]. Our approach
introduces a novel adiabatic isometric mapping (AIM) algorithm which is a numerical
realization of Alexandrov’s proof for embedding convex polyhedral metrics. In AIM
the uniformization of the polyhedral surface under SRF induces a dimensional reduc-
tion of our problem that enables us to decouple our embedding equations equations
on the spherical polyhedron – the endpoint of the SRF. We then use the reversibility
of the SRF map to adiabatically pull back the coordinates from the spherical polyhe-
dron to the original polyhedron. Our results are now being used by numerous groups
to develop a discrete quasi-local measure of congestion in networks. This quasi lo-
cal congestion (QLC) measure could be an ideal filtration parameter to guide network
reconfiguration and ensure load balance.

3 METHODS, ASSUMPTIONS AND PROCEDURES

3.1 Five Metrics and Milestones and Accomplishments.

We addressed four primary research metrics throughout this research effort. First,
(Metric 4.1-4.1.5 of proposal ) We had a kickoff meeting held in SUNY Stony Brook,
and reported developments on the dimensionally agnostic simplicial version of the RF
equations. The definition of these SRF equations required a subtile definition of the
Ricci tensor as we needed to project them from the dual edges on the edges of the
simplicial geometry. These equations were successfully benchmarked on a spectrum
of models and shown to be consistent with the continuum Hamilton’s RF equations.
In particular we applied our equations to the 600-cell 3-sphere and to the Angenent-
knopf double-loaned axisymmetric neck pinch geometry as proposed. Extensions to
non isotropic perturbations were also investigated successfullyy for the 600-cell model
[15]. Secondly, (Metric 4.2.1-4.2.2) S-T Yau developed a generalization of curvature
on graphs and applied this to an analysis of quantum tunneling on graphs [16, 17]. The
novel conclusion reached was that the single important factor in quantum diffusion on
graphs was graph symmetry, and not locality. Thirdly, (Metric 4.3.1-4.3.3) we were
forced to utilize diffeomorphism freedom in SRF in order to evolve our neck-pinch
3-geometry to a singularity. In particular, we needed to construct local cubic splines
in order to re-mesh our geometry around the neck-pinch region in order to keep the
circumcenters of the cells within the respective frustum block. Finally (Metric 44.1
and 4.4.2), we applied the SRF equations to efficiently solve an outstanding problem
of the isometric embedding of surfaces into Euclidean 3-space. This application is
being used to define a quasi-local definition of congestion in networks. This definition
mirrors the Wang and Yau definition for quasi-local energy and momentum in general
relativity. In addition, we have coupled the output of SRF to the input of the Perseus
persistent homology code in oder to discriminate singularity formation in SRF. Our
preliminary results show unique signatures for both Type-1 and Type-2 singularities
in the neck-pinch model. If robust, this will substantially reduce the computational re-
sources we need to meet our primary objective – the efficient and justifiable procedure
for distinguishing 3-manifolds as a finite sums of connected prime manifolds.

Our fifth milestone (Metric 4.5.1-4.5.4) involve reporting our results. We highlight be-
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low the eleven publications related to this effort, including the seminal paper defining
SRF in the 2014 issue of Comm. Math. Phys. Our research on SRF was presented
at talks within the last month of this effort at the University of Texas at Austin and as
a colloquium at the Mathematics Department at Florida Atlantic University. We held
meetings at both SUNY Stony Brook, Harvard University and at the Griffiss Insti-
tute. Numerous seminars were given at Harvard, Rutgers University, FAU and Stony
Brook. An invited talk was given at an International π Mathematics conference at
UBC in British Columbia.

We met or exceeded all five metrics and milestones described above. The community
has acknowledged that we have developed the first faithful simplicial representation
of Hamilton’s Ricci Flow in arbitrary dimension. Exciting applications are underway
both of pure mathematical foundation as well as applied complex network problems.

3.2 Publications Under this Effort

There are 10 publications in refereed journals associated to this effort, two poster
contributions, and ten seminars. The publications are as follows:

1. Miller, W. A., McDonald, J. R., Alsing, P. M., Gu, X. D. and Yau, S-T, “Simpli-
cial Ricci Flow,” Commun. Math. Phys. 329 579-608 (2014).

2. McDonald, J. R., Miller, W. A., Alsing, P. M., Gu, X. D., Wang, X., and Yau,
S-T., “On exterior calculus and curvature in piecewise-flat manifolds” Submitted
to J. Math. Phys. (2012) arxiv.org/abs/1212.0919 [math.DG].

3. Alsing, P. M., Miller, W. A., Corne, M., Gu, X. D., Lloyd, S., Ray, S. and Yau,
S-T, “Simplicial Ricci Flow: An Example of a Neck Pinch Singularity in 3D,”
Geom., Imaging Comp. in press (2014) ; arXiv:1308.4148 [math.DG].

4. Ray, S., Miller, W. A., Alsing, P. M. & Yau, S-T, “Adiabatic Isometric Map-
ping Algorithm for Embedding Polyhedral Metrics in Euclidean 3 Space,” to be
submitted to Class. Quantum Grav. (2014).

5. Tichy, W., McDonald, J. R. and Miller, W. A., “New efficient algorithm for the
isometric embedding of 2-surface metrics in 3 dimensional Euclidean space,”
Class. Quant. Grav. in press (2014).

6. Alsing. P., Blair, H. A., Corne, M., Jones, G., Miller, W. A., Mischaikow, K. and
Nanda, V. “Topological Signatures of Singularities in Simplicial Ricci Flow,” to
be submitted to J. Comp. Geom. (2014).

7. Rui Shi, Mayank Goswami, Jie Gao, Xianfeng Gu Is Random Walk Truly Mem-
oryless Traffic analysis and source location privacy under random walks, INFO-
COM (2013).

8. Siming Li, Wei Zeng, Dengpan Zhou, Jie Gao Compact Conformal Map for
Greedy Routing in Wireless Mobile Sensor Networks, INFOCOM (2013).

9. Xiaomeng Ban, Mayank Goswami, Wei Zeng, Xianfeng Gu, Jie Gao Topology
Dependent Space Filling Curves for Sensor Networks and Applications, INFO-
COM (2013).
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10. Wei Zeng, Huibin Li, Jean-Marie Morvan, Liming Chen, David Gu Xianfeng, An
Automatic 3D Expression Recognition Framework based on Sparse Representa-
tion of Conformal Images, 10th IEEE International Conference on Automatic
Face and Gesture Recognition, FG (2013).

11. Y. Lin, G. Lippner and S-T Yau, “Quantum Tunneling on Graphs,” Commun.
Math. Phys. 311, 113-132 (2012).

12. W. A. Miller, P. Alsing, M. A. Corne & S. Ray, “Equivalence of Simplicial Ricci
Flow and Hamilton’s Ricci Flow for 3D Neckpinch Geometries,” Geom., Imag-
ing and Comp. (2014) in press.

4 RESULTS AND DISCUSSION

4.1 Ricci Flow on Simplicial Geometries: the SRF Equations

Here we highlight the important features of our construction of a discrete form of
Hamilton’s Ricci flow (RF) equations for a d-dimensional piecewise flat simplicial ge-
ometry, S . These new algebraic equations are derived using the discrete formulation of
Einstein’s theory of general relativity known as Regge calculus (RC) [20]. A simpli-
cial Ricci flow (SRF) equation can be associated to each edge, `, of a simplicial lattice.
In defining this equation, we found it convenient to utilize both the simplicial lattice
S and its circumcentric dual lattice, S∗. As rotations occur in a polygon h∗ ∈ S∗.
It is most natural to define the Ricci tensor along an edge λ in the boundary of h∗

in this dual lattice. We refer to this as a “dual edge.” In a d-dimensional simplicial
lattice S the hinges are (d − 2)-dimensional simplicies. The dual edge λ is dual to a
(d − 1)-dimensional simplex. This simplex has d + 1 hinges, h in its boundary. The
dual-edge Ricci tensor, Rcλ is naturally defined as a certain weighted sum over these
d − 1 hinges h. We showed in [8] that the dual-edge SRF equation is naturally ex-
pressed as the proportionality between (1) the dual edge simplicial Ricci tensor, Rcλ,
associated with the edge λ ∈ S∗, and (2) a certain volume weighted average of the
fractional rate of change of the edges, λ ∈ `∗, of the circumcentric dual lattice, S∗.
The inherent orthogonality between elements of S and their duals in S∗ provide a sim-
ple geometric representation of Hamilton’s RF equations. The foundation of our work
under this grant is based on the following definition and associated corollary:

Definition 1. We define the dual-edge Regge-Ricci flow equation for any compact,
piecewise–flat simplicial geometry, S, as an equation for each edge, λ, in the circum-
centric dual lattice, S∗,

Fractional rate of change
of a circumcentric

dual edge,
1
λ
∂λ
∂t

 = −


Ricci tensor associated
to the circumcentric

dual edge,
Rcλ

 . (1)

The dual edge SRF equation can then be projected onto an edge ` ∈ S by taking a
certain weighted sum over all the (d− 1)-dimensional simplicies sharing edge `.
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Corollary 1. The simplicial Regge-Ricci flow equation for any compact, piecewise–
flat simplicial geometry, S, can be expressed as an equation for each edge, ` ∈ S,

The volume averaged
fractional rate of change

of the dual edge,〈
1
λ
∂λ
∂t

〉
`

 = −

 Ricci tensor associated to
the simplicial edge,

Rc`

 . (2)

This was proved in [8].

We organize our results and discussion in this subsection into four sections. First,
we express the Hamilton’s RF equations in a mixed tetrad form that will be most
convenient to apply to our simplicial geometry. Second, we define curvature on the
simplicial lattice and construct the simplicial Ricci tensor. Third, we then construct the
dual-edge (λ) SRF equation and project this onto an edge ` in the simplical lattice S to
prove the corollary. Finally, we solve these equations for a few illustrative examples
and show that they reproduce the continuum Hamilton RF results to second order in
the lattice. .

4.2 Tetrad Formulation of Hamilton’s Ricci Flow Equation

The RF equation of a d-dimensional Riemannian geometry was first introduced by
Hamilton [30],

∂gµν
∂t

= −2Rµν , (3)

whereRµν are the covariant components of the Ricci tensorRc, and gµν are the compo-
nents of the metric tensor. It was our goal to reconstruct the RF equation of Hamilton
on a piecewise–flat simplicial geometry, S, by using the formalism of RC [20]. To this
end, and without loss of generality, we consider a point p ∈ {M, g} where we can
construct a time–independent orthogonal basis, {eeea} , ∀a = 1, 2 . . . .d, i.e.

ėeea ≡
∂ eeea
∂t

= 0. (4)

The contravariant components of the metric tensor in this basis,

ggg = eeeag
abeeeb, (5)

will be, by construction, diagonal,

gab = diag {gaa} . (6)

In this specially-chosen basis (Eq. 4) the time rate of change of the metric will be
expressed solely in terms of the time derivatives of its d diagonal components.

ġgg = eeea ġ
ab eeeb = eeea ġ

aa eeea (7)

We found it convenient for our purposes to express the RF equation (Eq. 3) in its
mixed–index form, i.e. as the components of a vector-valued 1-form equation in this

6
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basis at point p in the sense of Cartan geometry [31]. The components of these mixed–
index RF equations take a simple form,

gaa ġaa = −2Ra
a. (8)

Since the metric at point p is diagonal then, gaa = 1/gaa, and the RF equation takes a
simple form, (

Fractional rate of
change of gaa

)
=
ġaa
gaa

= −2Ra
a. (9)

This mixed index tetrad equation forms the basis of the SRF equations.

4.3 Curvature of a Piecewise–Flat d-Dimensional Simplicial Geometry: the Rm
and Rc tensors

In this section we provide a brief review of the curvature on a piecewise–flat simplicial
lattice with emphasis on its application to the SRF equation. Simply put, we wish to
define the dual SRF equation using Eq. 9 with a = λ. We motivate this in this section.
The results rely critically on the mutual orthogonality of the simplicial lattice, S and
its dual S∗.
Although a more complete and thorough description will appear in the literature [8,
29], we felt that a review would make the derivation more complete for this final
report. In particular, we briefly construct of the Rm and then the Rc on the simplicial
lattice as well as its circumcentric dual lattice. We find it convenient to leverage the
framework of RC [20, 32, 33, 34, 35, 36]. However, an essentially equivalent treatment
of curvature on piecewise–flat simplicial manifolds is afforded by recent developments
in DEC [22]. Both approaches, RC and DEC, appear to have independently encoded
the geometry and curvature structure on discrete simplicial lattices in similar ways, and
both utilize the circumcentric dual lattice in a fundamentally important way [8, 29].

In the Euclidean form of RC the geometry of the interior of each of its d–dimensional
simplicies is assumed to be flat Euclidean space, Ed. The geometry of each simplex in
S is completely determined by the square of its

(
d
2

)
= d(d−1)

2
edge lengths. Therefore,

the entire lattice geometry and its curvature structure is completely determined by the
squared length of all its edges, {`2i }, and only these edges. The set of all edge lengths
of the simplicial geometry is the simplicial analogue of the metric, i.e.

ggg ←→ {`2i }. (10)

Any geometric quantity on the lattice, e.g. its lengths, areas, volumes, curvatures, and
even the dual lattice are defined solely in terms of these edge lengths and nothing else.

The circumcentric dual lattice is fundamental to RC [32, 33, 38, 39] and DEC. Con-
sider a d-dimensional simplicial lattice, S . Each vertex forming S∗ lies at the center
of a d-simplex in S. The dual edges λ ∈ S∗ connect adjacent circumcentric vertices
across a common (d− 1)-simplex. This edge is perpendicular to this (d− 1) simplex
face. Consider a compact simplicial lattice S and its circumcentric dual S∗. For sim-
plicity, and not out of necessity, we consider only compact d–dimensional simplicial
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geometries in this final report. This could be extended to geometries with boundaries
by utilizing previous results in RC [40]. Furthermore, we also assume here, for the
same reasons, that S is a well–centered Delaunay lattice [37] and S∗ is its Voronoi
lattice. The vertices, edges, triangles, . . . and d–simplexes in S will be denoted by
σ0, σ1, σ2, ..., σd; respectively. The geometry of each simplex is determined uniquely
by its

(
d
2

)
squared lengths; consequently the geometry of the entire simplicial lattice,

{`2i } ∈ S is a function of all the edge lengths. Similarly, we label the vertices, edges,
polyhedra and polytopes of S∗ by σ∗d, σ∗d−1, σ∗d−2, . . ., σ∗1 , σ∗0 , respectively. The geom-
etry of each of these dual cells owes its existence, and can be expressed as, functions
of the squared edge lengths of S . The subscript on the simplicial elements is its di-
mension, e.g. σk ∈ S is a k-simplex; where the subscript on the circumcentric dual
polytope is its co-dimension, e.g. σ∗k ∈ S∗ is the (d − k)-dimensional circumcentric
dual element of σk ∈ S. Perhaps the most important property of the Voronoi and
Delaunay lattices is that each element σk ∈ S is perpendicular to its dual element
σ∗k ∈ S∗.
We have discovered that the d–volume formed by connecting the vertices of the k-
simplex, σk, to the vertices of the (d − k)–dimensional polytope forms what we refer
to as a d–dimensional hybrid polytope, Vkk∗ , of volume,

|Vkk∗| = 〈σk|σk〉 =

∫
σk ∧ σ∗k =

(
d

k

)−1
|σk||σ∗k| =

k!(d− k)!

d!
|σk||σ∗k|, (11)

and is essential to constructing curvature tensors on the simplicial lattice. That this d–
volume is a simple product of the volume of the dual–cell pairs reflects an important
property of RC and is due to the orthogonality between the simplicial and circum-
centric dual lattice. In addition, these d-hybrid volumes, when applied to all pairs of
k-dual cells {σ∗k, σk}, provide a proper tiling of the discrete geometry. The curvature
of the simplicial lattice has compact support on such hybrid volumes, e.g. the Rm is
naturally defined on Vhh∗ , the Rc on Vλλ∗ , and the scalar curvature, R, on Vvv∗ , where
h is the (d − 2)-dimensional hinge in S, λ is a dual edge in S∗, and v is a vertex in
either S or S∗ [22, 34, 35, 36]. We provide an illustration of the five hybrid volumes
in the case of a 4–dimensional lattice in Fig. 1.

In Fig. 1 each of the five rows in this table illustrates one of the five hybrid 4–
dimensional polytopes. The black edges (thick lines) in the diagram are in the simpli-
cial Delaunay lattice, S while the red (thick grey) edges are in the circumcentric dual
Voronoi lattice, S∗. The blue (thin) edges are added in the right–most column and
connect the vertices of the Delaunay lattice to the vertices of the Voronoi lattice thus
forming a 4–dimensional polytope. Each of these 5 polytopes, when applied through-
out all similar elements of S, provide a complete tessellation of the lattice spacetime.
The symbols Vkk∗ in the left column completely characterize the hybrid polytope in
the d–dimensional lattice. The first number, k, is the k-dimensional simplicial ele-
ment σk ∈ S, while the second starred number is its co-dimension k dual polytope in
σ∗k ∈ S∗. In the center column, we show the k–dimensional simplicial element in the
black line, and its dual (d− k)–dimensional element in S∗ is shown in red (grey).
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Figure 1: The five hybrid 4–dimensional polytopes.

On a simplicial lattice, it is well known that the curvature is concentrated on the (d-
2)–dimensional hinges h [20]. The form of this curvature is a conic singularity at
the hinge. One approach used by researchers is to rigorously analyze this singularity
structure, explicitly constructing a Dirac delta distribution for the curvature on the
hinge h by embedding the hybrid block and its simplicial support into a (d + 1)-
dimensional Euclidean space [32, 41]. This Dirac delta distribution is assumed to be
uniformly distributed over the hinge, h, and thus integral curvature measures were
derived. An alternative and equivalent description has recently been used [8, 29, 33,
34, 35, 36, 39]. First, we take the support for this curvature to be uniformly distributed
over the entire hybrid block. Second, we use the Voronoi area, h∗ and only this area to
define the support for the sectional curvature. Finally, we assume the geometry within
each hybrid block, Vhh∗ , is an Einstein space [42]. These approaches yield curvature
components within each hybrid cell that are proportional to each other, and can be
transformed consistently to each other by taking suitable traces or identifying certain
eigenvalues. It is important to emphasize that these are hybrid curvatures, and not the
curvature tensors that are found in the RF and SRF equations. They refer to one of the
sectional curvatures and not a trace that is required to define the Ricci tensor.

In the remainder of this final report we assume that the components of curvature within
the V(d−2)(d−2)∗ hybrid block can be treated as an Einstein space, and we define the
Gaussian curvature by the parallel transport of vectors restricted to the perimeters of
the dual Voronoi polygons, h∗ = σ∗d−2 where h∗ is the dual polygon to the (d-2)–
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dimensional simplicial hinge, h. In this sense, the area of the dual Voronoi polygon,
h∗, becomes the unique weighting area associated to hinge h in order to define the
Gaussian curvature,(

Gaussian curvature
associated to hinge h

)
= Kh =

Angle V ector Rotates

Area Circumnavigated
:=

εh
h∗
, (12)

where εh is the deficit angle associated to hinge h, and h∗ is the area of the Voronoi
plane dual to hinge h. This V(d−2)(d−2)∗ hybrid cell is defined as the set of points in
the lattice closer to the hinge h than to any other hinge and provides a reasonable
support for this curvature. In the next three subsections we briefly reexamine the
construction of the Riemann (Rm), Ricci (Rc) and scalar curvature (R) on a simplicial
lattice beginning as a guide with their respective definitions from the continuum.

For notational purposes, whenever we write a volume using a capital V , it will be un-
derstood that this represents a d–dimensional volume. It can represent a d-dimensional
hybrid or reduced–hybrid volume. Its subscript will identify to which volume it corre-
sponds. For example, the hybrid cell V(d−2)(d−2)∗ associated to hinge h will be written
as Vh = V(d−2)(d−2)∗ . On the other hand, if we write, simply, h, in the correct context
with no capitol, V , then it will mean the volume of h = |h|. Our notation follows
similarly for all other elements, e.g. ` = |`| for the length of an edge, h∗ = |h∗| for the
area of the Voronoi polygon as in Eq. 12.

Now we utilize the local Einstein-space structure within each hybrid cell, and construct
the Rm on S is by examining the parallel transport of a vector around a closed loop.
In particular, a vector, vvv := va eeeb will ordinarily return rotated by an amount, eeea δva,
when parallel transported around the boundary of the area element, Acd eeec ∧ eeed,

δva = −2Ra
bcd v

bAcd. (13)

This defines a constructive way to explore the components of the Rm through the
rotation operator.

RRR =
1

4
eeea ∧ eeeb︸ ︷︷ ︸
rotation
bivector

Rab
cd︸ ︷︷ ︸

Rm

eeec ∧ eeed︸ ︷︷ ︸
loop of
circum-

navigation

. (14)

The curvature of a d-dimensional piecewise flat simplicial manifold is concentrated
on its co-dimensional 2 simplicial hinges, h [20]. Given any hinge, h = σd−2 ∈ S ,
there will be at least three d-simplicies sharing hinge h. We assume here that there are
n ≥ 3 of these hinging on h, and we label these simplicies {σd(i)} for i = 1, 2, . . . , n.
Let us consider a loop, C, within the interior of the collection of these n d-simplicies
that encircles h only once. In addition, we consider a vector vvv at a point p0 along C.
We place p0 at the intersection of C and the (d-1)-simplex , σd−1(1, 2) that is shared
by the two adjacent d-simplicies, σd(1) and σd(2). The parallel transport of this vector
within σd(1) is trivial since the geometry is flat. The angle vvv makes with the d(d+1)/2
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edges of σd remains constant as it is parallel transported along C. Furthermore, as we
continue to parallel transport the vector along C into σd(2) it is equally trivial. There
is no curvature concentrated at their juncture (σd−1(1, 2)), i.e. the two adjacent d-
simplicies can be embedded into the same flat Euclidean geometry. We can continue
to parallel transport vvv along C through the remaining (n − 2) d-simplicies trivially;
however, when we return to the starting point p0 on C we will find the vector rotated
by the deficit angle εh,

εh := 2π −
n∑
i=1

θi, (15)

where the summation is over all σd(i) sharing hinge h, and θi is the hyperdihedral angle
between the two (d− 1)-dimensional simplicial faces σd−1(i− 1, i) and σd−1(i, i+ 1)
of simplex σd(i) sharing hinge h. Remarkably, this rotation bivector lies in the plane,
h∗ = σ∗2 perpendicular to hinge h, and this rotation is independent of the orientation
and area of C. This captures the integrated curvature at hinge h. The curvature is a
conic singularity. The closed curve C can be shrunk to an arbitrarily small area, AC ,
around h without affecting the rotation in vvv under parallel transport. Therefore the
sectional curvature can be made as large as one pleases by shrinking the area, Conical Sectional

Curvature of hinge
h ∈ S

 =

(
Angle vector rotates

Area circumnavigated

)
= lim

AC→0

εh
AC

=∞.

(16)

Is there a natural area that we can assign to the hinge, h? What area does RC use? To
answer these questions, we identify three features of S that yield a unique curvature
measure. First, the simplicial geometry is piecewise flat. Second, each element of
simplicial geometry, σk ∈ S is orthogonal to its circumcentric dual element, σ∗k ∈
S∗. Thirdly, it has been shown that the Regge equations as well as the Regge action
are uniquely defined as distributed quantities over such circumcentric dual elements
[33, 34, 43]. In his original paper on RC, Regge demonstrated that the curvature of a
simplicial lattice is concentrated at each of the co-dimension 2 hinges, h = σd−2 ∈ S,
and this curvature at each h is a conic singularity as illustrated by Eq. 16. However, in
RC it appears that this curvature is defined to be distributed uniformly over the convex
hull of the triangle hinge h and the polygon, h∗ = σ∗2 ∈ S∗ dual to h. Following
the notation introduced in the end of last section, this area, h∗ ∈ S∗ is central to the
hybrid cell Vh := V22∗ , and this hybrid cell is the set of points in S closest to hinge h
than to any other hinge. The area circumnavigated is, h∗ := |h∗| since RC defines the
loop C to be the perimeter of the dual polygon h∗. This area, h∗ and the deficit angle,
εh, are both functions of the squared edges, {`2i } of S. This (1) dual area h∗ ≡ |h∗|,
and (2) rotation, εh, yield the hinge-based (or equivalently dual hinge-based) sectional
curvature in RC,

Kh = Kh∗ =
εh
h∗
. (17)

In order to use the continuum equations, Eqs. 13-14 we need to construct an appropri-
ate set of basis vectors within the Vh hybrid cell defined by the convex hull of h and h∗.
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Following the development in Sec. 4.2, we will find it convenient to define a time in-
dependent d-dimensional frame of orthogonal bases 1-forms, {eeea} for a = 1, 2, . . . , d,
and corresponding basis vectors, {eeea} for a = 1, 2, . . . , d, that span a given hybrid
polytope Vhh∗ ,

eeea = gab eee
b. (18)

We refer to the following basis as the `λ–hybrid basis. We first identify an edge ` ∈ h
and a dual edge λ ∈ h∗ in Vh. If we connect the vertices of this λ to the d vertices
of the hinge h, this will form a reduced hybrid d-simplex that we will refer to as Vhλ,
i.e. the hybrid cell Vh restricted to λ. The sum of all Vhλ’s for each λ ∈ h∗ equals the
volume of the non-simplicial hybrid cell,

Vh =
∑
λ∈h∗

Vhλ. (19)

We define our orthogonal basis on each of these reduced hybrid cells, Vhλ. In order to
capture the orthogonality between S and S∗ within the hybrid cell Vh, we define basis
vectors of four kinds.

eeea =


eee` =

−→̀
, ` ∈ h,

eeei = −→mi =
−−−−→OiOi+1, ∀i ∈ {1, 2, . . . , d− 3},

eeeλ =
−→
λ , λ ∈ h∗,

eeehλ = −−→mhλ,

(20)

where,

• O1 is the circumcenter of edge ` ∈ h,

• O2 is the circumcenter of any one of the triangles, σ2, in h such that σ2 3 `,
• O3 is the circumcenter of any one of the tetrahedra in h such that σ3 3 σ2,

...

• Od−3 is the circumcenter of one of two the (d-3)-dimensional simplexes in h such
that σd−3 3 σd−4,

• Od−2 is the circumcenter of the (d− 2)-dimensional simplicial hinge, h = σd−2,

and, m`λ is the segment from O1 to the point on lambda, O∗λ, so that this line segment
is perpendicular to λ, i.e. it intersects λ at the circumcenter of the (d-1)-dimensional
simplex, λ∗. The set of (d-2) mutually orthogonal vectors,1{−→̀

,−→mi

}
, (21)

1In 2-dimensions there the hinge is a vertex and the space is a panned by only two orthogonal vectors, {~λ, ~mhλ},
i.e. there are no ~mi’s. In three dimensions there are also no mi’s and the space is a panned by the three orthogonal
vectors, {~̀, ~λ, ~mhλ}. It is only in four and higher dimensions that we start generating the mi’s.
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span the hinge, h = σd−2, while the remaining two vectors,{−→
λ ,−−→mhλ

}
(22)

span the dual polyhedron, h∗. The hinge can be expressed as a (d-2)-vector,

hhh =
1

(d− 2)!
(eee` ∧ eee1 ∧ eee2 ∧ . . . ∧ eeed−3) , (23)

where the (d-2)-volume of the hinge is h = |hhh|. In addition, the dual hinge can be
equivalently expressed either as the dual of Eq. 23 or by using the last two basis vectors
in Eq. 22,

hhh∗ = h∗
eeeλ ∧ eeehλ
|eeeλ ∧ eeehλ|

= h∗ĥhh
∗
. (24)

The contravariant components of this flat-space metric, ggg, in this vector basis is,

gab = diag

`−2,m−20 ,m−21 , . . . ,m−2d−3︸ ︷︷ ︸
hinge, h

, λ−2,m−2hλ︸ ︷︷ ︸
h∗

 . (25)

A dual set of orthogonal basis 1-forms can be generated,

ωωωa = gab eeeb, (26)

and the covariant components of the metric are just,

gab = diag

`2,m2
0,m

2
1, . . . ,m

2
d−3︸ ︷︷ ︸

hinge, h

, λ2,m2
hλ︸ ︷︷ ︸

h∗

 . (27)

We are now in a position to construct the Rmh associated to hinge h by examining
the rotation operator,RRR, defined by Eq. 14. The sectional curvature, Kh, is naturally
defined on the convex hull of h and h∗, where the convex hull is just the hybrid volume,
Vh = V22∗ (as illustrated in Fig. 1 for the special case of 4-dimensions). Furthermore,
this is the only nonzero sectional curvature within the hybrid polytope Vh. It is the
orthogonality between any element of the simplicial lattice, σk, and its corresponding
circumcentric dual, σ∗k, that yields an Einstein space geometry within each hybrid cell,
and that each of the d(d− 1) non–zero components of the Rmh is proportional to the
sectional curvature Kh[34]. No matter what the orientation of the loop, ΣΣΣ, we take
encircling the hinge h, the unit rotation bivector will always lie in the plane of h∗ and
have magnitude εh,

( . )RRR ( ΣΣΣ ) = ĥ̂ĥh∗ εh. (28)

Therefore, the only non-vanishing components of the simplicial Rm associated to
hinge h are when the first two indices lie in the dual polygon, h∗. While, it is true that

13
Approved for Public Release; Distribution Unlimited. 



in the basis chosen above the only non vanishing components of the Rm are in the
Voronoi plane, h∗,

Rλmλ
λmλ =

εh
h∗
. (29)

Nevertheless, this would not describe adequately the curvature within the hybrid cell.
In particular, any basis chosen in general position would ordinarily (except for a
set of measure zero) not have a single vector that lies in the hyperplane spanned
by h. This would yield a fully–populated rotation matrix. In particular, this would
be true for our specially constructed basis if we rotated each of the basis vectors{
~̀, ~m1, ~m2, . . . ~md − 3

}
even slightly out of the plane of h. In this sense, the space

within each hybrid cell, Vh , is a Einstein space [42]. Additionally, if we restrict the
parallel transport of vectors around the perimeter of the Voronoi polygon, h∗, then we
have usual Einstein space expressions for those components of the Riemann, Rmh,
the Ricci, Rch and scalar Rh curvatures associated exclusively to the Einstein space of
each hybrid cell Vh ,

Rm
(hyb)
h = Kh =

εh
h∗
, (30)

Rc
(hyb)
h = (d− 1)Kh = (d− 1)

εh
h∗
, and (31)

R
(hyb)
h = d(d− 1)Kh = d(d− 1)

εh
h∗
. (32)

Each of these Einstein space curvatures (Eqs. 30-32) associated with their hybrid cell
are uniformly distributed within this cell. This interpretation is consistent with other
derivations [32, 41] with proper care in their normalization. The component of the
Riemann associated to the hinge-based hybrid cell is the entire Riemann,

Rm
(hyb)
h = Rmh, (33)

as it realizes the entire sectional curvature attributable to the hinge h. Therefore, the
Riemann tensor in Cartan language is,

RmRmRmh = ĥ̂ĥh∗Rmh ĥ̂ĥh
∗ = ĥ̂ĥh∗ Kh ĥ̂ĥh

∗ = ĥ̂ĥh∗
εh
h∗
ĥ̂ĥh∗, (34)

where, ĥ∗ĥ∗ĥ∗ = hhh∗/h∗ is the unit 2-form generated on h∗ in hybrid volume, Vh. In the
`λ–hybrid basis this unit bivector is given by Eq. 24.

We constructed the Riemann tensor and in the remainder of this section we examine
the simplicial Rc on S. This will involve the simplicial version of taking the trace of
the simplicialRm tensor in Eq. 30. We examine theRc tensor here as it appears on the
right hand side of the RF equation (Eq. 3). This tensor was first introduced in [32], and
later in context within the hybrid cells by [36]. We briefly reconstruct this tensor by
utilizing the Einstein space geometry interior to Vh, and by using the `λ-hybrid basis
construction (Eq. 20) discussed in the previous section. This construction provides us
with a geometric description of the trace operation on a lattice geometry.
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Figure 2: We illustrate here the lattice geometry used to define the Rc tensor for a 3-dimensional
simplicial lattice.

In the continuum, the simplicial Rc is a 1-form valued 1-form,

RcRcRc = eeeaRab eee
b = eeeaRc

acb eee
b. (35)

This tensor is defined along some basis vector, eeeb in the tangent space. This basis
vector defines a common set of area bivectors for circumnavigation, i.e. ΣΣΣ = σcbeeec∧eeeb,
one for each, c 6= b . In the previous section we defined the Rmh in RC on the dual
Voronoi areas, h∗ = σ∗d−2 ∈ S∗ of the hybrid cell, Vh. Each edge, λ = σ∗d−1 ∈ S∗,
is a common bounding edge of d(d − 1)/2 of these dual polygons, h∗. It is therefore
natural to define a simplicial Ricci tensor, Rcλ, along these dual edges, λ. In this sense
the trace of the Rm is a suitable sum over each of these Voronoi ares, h∗ sharing edge
λ. We illustrate this in Fig. 2 for the case of three dimensions.

In Fig. 2 we illustrate the lattice geometry used to define the Rc tensor for a 3-
dimensional simplicial lattice. The Rc tensor is naturally defined on an edge, λ =
σ∗1 ∈ S∗. Along this edge we define one of the unit triad vectors, êeeλ of the `λ-basis,
where eeeλ = λ êeeλ as usual. In this illustration, we show the three dual polygons in red,
`∗|λ ∈ S∗ sharing edge λ. Dual to each of these polygons is an edge of the triangle
h = λ∗ ∈ S . Along one of these edges, ` ⊂ h, we define the second of the triad vec-
tors, eee` = ` êee`. Finally the normalized vector from the center of edge ` perpendicular
to edge λ, defines our final triad vector, eee`λ = m`λ êeem.

We construct the Ricci tensor, Rcλ , associated to a dual edge λ by properly tracing
over each of the Ricci tensors, Rc(hyb)h , defined in association with each Voronoi poly-
gon, h∗, containing dual edge λ. The trace, or sum, will be over all h∗ restricted to λ,
or h∗|λ. The trace is accomplished using a weighted average as described for RC in
[34, 35, 36] and independently in discrete exterior calculus by [22]. Here one considers
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the component of the Ricci tensor associated to the hybrid cell, Rcλ, to be uniformly
distributed over the hybrid d-volume of the simplicial lattice associated with edge Vλ
and integrates this over this volume. This integrated tensor can be identified with the
trace of the familiar hinge-based expression for simplicial Riemann tensor, Rmh in
Eq. 31 with the inclusion of a proper weighting factor. In particular,

Rcλ Vλ =
∑
h|λ∗

Rc
(hyb)
h Vλh︸ ︷︷ ︸

simplicial form
of the trace

, (36)

where,

Vλ =

(
d

1

)−1
λ λ∗ =

∑
h|λ∗

(
d

2

)−1
hh∗λ, (37)

Vλh =

(
d

2

)−1
hh∗λ, and (38)

Rc
(hyb)
h = (d− 1)Rmh = (d− 1)

εh
h∗
. (39)

Hence,

Rcλ =

∑
h|λ∗

Rc
(hyb)
h hh∗λ∑

h|λ∗
hh∗λ

:= 〈Rc(hyb)h 〉λ. (40)

In constructing Rcλ we make use of reduced hybrid blocks, Vh∗λ, as well as reduced
hinge volumes, h∗λ which are illustrated in the case of d = 4 in Fig. 3. In general, the
reduced hybrid d-volume, Vh∗λ, is the fraction of the set of points interior to the hybrid
d-volume, Vh∗ that are closest to the dual edge, λ. This provides a decomposition of
the hybrid cell into reduced hybrid cells,

Vh =
∑
λ∈h∗

Vhλ, (41)

as illustrated in Fig. 2. Each reduced hybrid cell, Vhλ, contain the circumcenters, Oi,
that defined the `λ–hybrid basis. Similarly, the reduced hinge is a (d-2)-volume, λ∗h,
and is defined to be the set of points in the interior of the (d-1)-dimensional simplex,
σ∗λ, that are closest to its bounding hinge, h, than to any other hinge in its boundary.

In Fig. 3 we illustrate the various geometric elements that were used to define the Rcλ
in 4-dimensions. The line segment λ = UV is the edge in the circumcentric dual
lattice, S∗, where we define the Ricci tensor. The tetrahedron λ∗ = {ABCD} ∈ S
is perpendicular to λ. If we connect the endpoints of λ to the four vertices of λ∗

the resulting 4-dimensional cell is the λ-hybrid simplex of volume, Vλ = (1/d)λλ∗.
In 4-dimensions the hinges are triangles. We highlight one of the 4 triangles, h =
{A,B,C} ⊂ ∂λ∗, bounding λ∗ by shading the triangle. The point O lies at the cir-
cumcenter of λ∗. It is the point equidistant from vertices, A, B, C and D. Point O
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Figure 3: An illustration of the various geometric elements that were used to define the Rcλ in
4-dimensions.

also lies on the dual edge λ. We refer to the tetrahedron formed by connecting O with
triangle hinge, h = {A,B,C}, as the restricted 3-volume, λ∗h. There are four such
reduced 3-volumes subdividing, λ∗. If we connect this shaded hinge, h, to edge λ, the
resulting simplex, will be the hλ-reduced hybrid block of volume, Vλh = (1/d)λhλ.

The last two indices, c and b, of the Rm in the far right-hand side of Eq. 35 identify
the components of a circumnavigated area, and in our case this will be the Voronoi
polygons, h∗|λ, sharing edge λ. In the hλ-basis the two indices identifying this area
element are b = λ and c = mhλ, or vise versa. As we argued earlier, the Rc tensor is
associated with dual edge, λ, consequently b = λ and c = mhλ. The Ricci tensor is
diagonal in the space of bivector-valued 2-forms. Therefore, since index b = λ then
index a must be the moment arm m`λ. There is a unique mhλ for each of the dual(
d
2

)
Voronoi polygons, h∗|λ, sharing edge λ. We define Rcλ by summing over these

hλ-moment arms. Therefore, we would sum over all all polygons, h∗, sharing edge,
λ, i.e.

RRRc (. . . ,λλλ) = eeeaR
ca
cb eee

b (eeeλ) = eeeaR
ca
cλ =

∑
h∗|λ

eeeaR
mλa

mλλ. (42)

Finally, since we showed that the simplicial Rm has compact support and uniformly
distributed over the dual hybrid polytopes, V(d−2)(d−2)∗ , and since the geometry within
this hybrid block is locally an Einstein space, then he only non-zero vector component,
a left in Eq. 42 is along λ. Therefore, the simplicial Rcλ is diagonal,

RRRc (. . . ,λλλ) =
∑
h∗|λ

eeeλR
mλλ

mλλ =
∑
h∗|λ

eeeλR
h∗
h∗ = eeeλ

∑
h∗|λ

Rh∗
h∗ . (43)

To complete the analysis of the right hand side of the SRF equation, we need also to
define the Ricci tensor, Rc`, on an edge ` ∈ S. In other words we need to express this
`-based Ricci tensor associating it with an appropriate weighted sum of the λ-based
Ricci tensor equation (Eq. 40) onto the simplicial edge `. In essence, we trace over the
components of Rcλ, one component for each λ ∈ ∂`∗, with respect to the simplicial
edge ` [29]. We will have to similarly trace over the left-hand side of the SRF equation
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in Sec. 4.4 in order to prove the Corollary 1. In particular, consider an edge ` ∈ S as
illustrated in Fig. 4. Similarly, one integrates the Rc` over the hybrid d-volume of the
simplicial lattice associated with edge V` and equates this with the trace of the familiar
hinge-based simplicial Ricci tensor (Rch) [34],

Rc` V` =
∑
λ|`∗

Rcλ V`λ︸ ︷︷ ︸
simplicial form
of the trace

, (44)

where the sum is over the dual edges, λ bounding Voronoi polygon, `∗, and

V` =

(
d

1

)−1
` `∗ =

∑
h|`

(
d

2

)−1
h` h

∗, and (45)

V`λ = V`|λ =
∑
h|`

(
d

2

)−1
h`|λ h

∗. (46)

In order for us to obtain the right-hand side of Eq. 2 we make use of the following
definition for the edge-based weighted average:

〈fh〉` :=
1

V`

∑
h|`

fh V`h =

∑
h|`

fhh`∑
h|`

h`
. (47)

This yields an explicit expression for the Ricci tensor, Rc`, associated to an edge, `, in
the simplicial geometry,

Rc` =
1

V`

∑
λ|`∗

Rcλ V`λ (48)

=
1

V`

∑
λ|`∗

 1

Vλ

∑
h|λ∗

Rc
(hyb)
h Vλh

V`λ (49)

=
∑
λ|`∗

∑
h|λ∗

Rc
(hyb)
h

(
Vλh
Vλ

) (
V`λ
V`

)
, (50)

or equivalently,
Rc` = (d− 1) 〈〈Rmh〉λ〉`. (51)

In the left-most diagram in Fig. 4, we focus our attention on an edge ` = AB in
a 4-dimensional simplicial lattice, S, and illustrate the hinges h sharing this edge.
In this particular case there are six such hinges, hi = ABHi, for i = 1, 2, . . . , 6.
The orientation on edge ~̀ = ~AB induces an orientation on each of the six triangles
sharing the edge. In particular, the triangle is a bi-vector in S, where hi = |hi| ĥ =

18
Approved for Public Release; Distribution Unlimited. 



6

4

H5

H
6

H3

H2

H1

A

B

H6

O1

h
6

h
6

*

h
l

A

B

θ
O6

6

A

B

O

H

Figure 4: The geometric environs of an edge in a 4-dimensional simplicial lattice (left), one of its
six hybrid blocks (center) and the edge-based hybrid area (right).

|ABHi|
(

~AB∧ ~AHi
2|ABNi|

)
. In the central figure we focus our attention on one of the six

hinges, h6, sharing edge `, and its Voronoi dual polygon h∗6 ∈ S∗. This dual polygon,
h∗6 is perpendicular to the hinge, h6. The dotted line shown in the figure is simply the
intersection of these orthogonal 2–dimensional surfaces. The orientation of the edge,
` also induces an orientation on the bi-vector, h∗6 ∈ S∗. In particular, hhh∗i = |h∗i | ĥhh

∗
i =

h∗i

(
ĥhhi

)∗
= h∗i

(
~AB∧ ~AHi

2|ABNi|

)∗
. The circumcenter of hinge h6 is labeled O6 . This point

is equidistant from vertices A, B and H6. The “hλ–moment arm” is the edge mhλ =
O1O6 = (1/2)~̀cot (θ) reaching from the center of edge ` to the circumcenter of
triangle h6. It is instrumental in the Cartan construction of the Regge–Einstein tensor
[33]. The right–most figure shows the fraction of hinge h6 closer to edge ` than to its
other two edges. This edge–based triangle in S has area h` = ABO6 = 1/2 `2 cot (θ6),
which is useful in defining the Rc in RC.

4.4 The Simplicial Ricci Flow Equation

Definition 1. We define the dual-edge Regge-Ricci flow equation for any compact,
piecewise–flat simplicial geometry, S, as an equation for each edge, λ, in the circum-
centric dual lattice, S∗,

Fractional rate of change
of a circumcentric

dual edge,
1
λ
∂λ
∂t

 = −


Ricci tensor associated
to the circumcentric

dual edge,
Rcλ

 . (52)

Remark 1. We have shown here and in [36] that the Ricci tensor is naturally associated
with a dual edge, λ ∈ S∗. We consider this edge, λ, and the associated hybrid cell,
Vλλ∗ . We also use the `λ–hybrid orthogonal basis introduced in Sec. ??. Additionally,
Sec. ?? and [36] showed that the mixed Ricci tensor is diagonal in λ. Motivated by
Hamilton’s RF equation, Eq. 9, with mixed indices in an orthogonal basis, then the
RRF equation associated with this dual edge is,

ġλλ
gλλ

= −2Rλ
λ = −2Rcλ. (53)
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Using the gλλ component in the covariant metric for the `λ–hybrid basis, Eq. 27, we
obtain the dual-edge RRF equation for λ,

λ̇

λ
= −Rcλ. (54)

Since the geometry of S and S∗ is completely determined by the edges, {`i} ∈ S , and
nothing more, and since there are ordinarily many more dual edges, λ, than there are
simplicial edges, `, then the system of equations given by the dual-edge RRF equation,
Eq. 54, will ordinarily be overdetermined and have no solution. In other words each
λ is a function of the `’s. Therefore, one solution would be for us to project, or trace,
these dual-edge RRF equation onto the simplicial edges. This can be done using an
appropriate weighted average.

Corollary 1. The simplicial Regge-Ricci flow equation for any compact, piecewise–
flat simplicial geometry, S, can be expressed as an equation for each edge, ` ∈ S,

The volume averaged
fractional rate of change

of the dual edge,〈
1
λ
∂λ
∂t

〉
`

 = −

 Ricci tensor associated to
the simplicial edge,

Rc`

 . (55)

Proof. We express the RRF equation by mapping the dual-edge RRF equation (Eq. 54)
onto an edge `,

〈λ̇/λ〉` = −〈Rcλ〉`. (56)

It suffices then to consider the right–hand side of this equation. Using the trace in
[29, 34, 35] on Rcλ, we note that

Rc`V` =
∑
λ|`∗

RcλV`λ. (57)

We also note that the `− λ reduced hybrid volume is symmetric in its indices,

V`λ = Vλ`, (58)

and we can expand the ` hybrid volume into a sum of these reduced hybrid cells,

V` =
∑
λ|`∗

V`λ. (59)

Therefore, we see by the definition of the weighted average in Eq. 57 that the right-
hand side of Eq. 56 is simply

〈Rcλ〉` = Rc`, (60)

and is given explicitly by Eq. 51. Applying the edge-based weighted average to the
LHS of the equation as we just did for the RHS of the equation yields the simplicial
RRF equation, 〈

1

λ

∂λ

∂t

〉
`

= −Rc`. (61)
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Figure 5: A 2-dimensional rendering of the simplicial double-lobed model.

4.5 Benchmarking the SRF equations on 3-manifolds

Under this effort we benchmarked the SRF equations on four models,the 3-cylinder,
the 3-sphere, the anisotropic Bianchi IX geometry and the axisymmetric neck-pinch
3-geometry of Angenent and Knopf. These were reported in [8, 9, 10], respectively.
The most important observation from these examples was the sensitivity of the SRF
equations to the lattice properties. We observed stiff equations, and unless we re-
meshed the neck-pinch geometry along cubic splines, we were not able to evolve the
geometry to a singularity. We observed that the SRF equations depended on the well-
centerdness of the circumcentric lattice.

We consulted with leading numerical scientists working with unstructured meshes,
and were told that such sensitivity is not unexpected and that there are sophisticated
re-meshing and mesh refinement methods that can handle such difficulties. We are
currently collaborating with faculty at the University of Texas in the Department of
Mathematics as well as in their Center for Numerical Analysis and Institute for Com-
putational Science.

Most recently we took the continuum limit of the SRF equations for a sequence of
finer and finer resolved lattice geometries modeling the neck-pinch of Angenent and
Knopf. In Fig. 5 we illustrate a 2-dimensional rendering of the simplicial double-lobed
model. For visualization purposes, we have suppressed one of the azimuthal angles
for each of the 2-sphere cross sections. In two dimensions the piecewise linear (PL)
surface tiles are trapezoids, where in 3-dimensions they are frustum polyhedra [10].
In this paper we take the limit of an ever more finely discretized sphere, and with
an ever increasing number of spherical cross sections. In this limit we show that the

21
Approved for Public Release; Distribution Unlimited. 



continuum Hamiltonian RF equations are recovered from the SRF equations.

The initial data is determined by a radial profile function at t = 0 for the double-lobed
geometry, and amounts to specifying a function relating the cylindrical radius, ρ, to a
scaled proper axial distance along the double-lobed geometry away from an equator
or neck, a ∈ {amin, amax},

s = ψ(a). (62)

By way of an example, if the double-lobed geometry has no neck, and were just a
sphere of radius, R0, this initial radial profile function is simply the cylindrical coor-
dinate radius,

ρ(a, t = 0) = R0 cos(a). (63)

We provide a simplicial approximation of an axisymmetric warped-product geometry
at time t characterized by an arbitrary C2 radial profile

ρ(a, t) = ρ(a) ∀ a ∈ {amin, amax}. (64)

We first identify an arbitrarily large number (Ns →∞) of nearly equal-spaced spher-
ical cross sections. Next we examine one of these spheres, namely the i′th cross-
sectional sphere. There are many ways to approximate this by a polyhedron with an
arbitrarily large amount of vertices, Ns → ∞. We utilize the symmetry of our model
to concentrate only in the vicinity of a single point O on the sphere. At this point we
project a infinitesimal flat-space hexagonal lattice onto its surface, as shown in Fig. 6.
Here we take the length of the isosceles triangles that we are projecting onto the sphere
of radius ρ to be arbitrarily small, `k � ρ. This yields an infinitesimal parameter in
our model that we will drive to zero,

ξ :=
`

ρ
→ 0. (65)

In this manuscript we assume ξ = `/r is a global infinitesimal for each of the, Na,
triangulated sphere cross sections in this model. In order to construct the SRF equa-
tions at O it is necessary for us to extend the lattice radially one more level out from
the first six equilateral triangles so that we can examine 18 additional equilateral tri-
angles, each of edge length `k � ρ, that we project onto the surface of the sphere
as shown in the right-hand side of Fig. 6. The projected triangles will no longer be
equilateral. In particular there will be two sets of 6 isosceles triangles, {O,X ,Y} and
{V ,X ,Y}, as well as twelve triangles with three different edge lengths {X ,U ,V}.
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Figure 6: The 2-dimensional triangulated region around the vertex,O , on a spherical cross-section
of the axisymmetric geometry.

These 24 triangles are composed of combinations of six distinct edges,

s = cos−1
( −→
CO
|CO| ·

−→
CX
|CX |

)
≈ ρ ξ

(
1− 1

3
ξ2 +

1

5
ξ4 +O [ξ]6

)
, (66)

s̄ = cos−1
(
ĈX · ĈY

)
≈ ρ ξ

(
1− 11

24
ξ2 +

203

640
ξ4 +O [ξ]6

)
, (67)

u = cos−1
(
ĈX · ĈV

)
≈ ρ ξ

(
1− 35

24
ξ2 +

1183

640
ξ54 +O [ξ]6

)
, (68)

ū = cos−1
(
ĈU · ĈV

)
≈ ρ ξ

(
1− 11

6
ξ2 +

203

40
ξ4 +O [ξ]6

)
, (69)

u′ = cos−1
(
ĈX · ĈU

)
≈ ρ ξ

(
1− 7

3
ξ2 +

31

5
ξ4 +O [ξ]6

)
. (70)

We were able to explicitly show that the SRF equations converged to the continuum
limit in second order. In particular we showed that for a small parameter ξ shown
in Fig. 6 the axial and radial SRF equations reproduced Hamilton’s RF equations ex-
actly, where we immediately recognized the right-hand side of the axial-edge SRF
equation is the second derivative of ρ with respect to a, and therefore we recover the
corresponding continuum RF equation for the axial edge in the limit, namely

ȧi
ai

= 2

(
ρi+1−ρi

ai

)
−
(
ρi−ρi−1

ai

)
ai︸ ︷︷ ︸

continuum-limit SRF equation

=⇒ ȧ

a
= 2

ρ′′

ρ︸ ︷︷ ︸
continuum RF equation

. (71)

We also examined the σi-edge SRF equation and showed it converges to the contin-
uum RF equation to second order in ξ. In particular, we recover the corresponding
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continuum RF equation for the axial edge in the continuum limit, namely

ρ̇i
ρi

=

(
ρi+1−ρi

ai

)
−
(
ρi−ρi−1

ai

)
ai

ρi
+

(
ρi+1−ρi

ai

)2
ρ2i

− 1

ρ2i︸ ︷︷ ︸
continuum-limit SRF equation

=⇒ ρ̇

ρ
= ρ′′/ρ+ (ρ′/ρ)

2 − 1/ρ2︸ ︷︷ ︸
continuum RF equation

.

(72)
The errors in these equations were of second order in our small parameter, for example
the Gaussian curvature at edge âi is

Kâi :=
εâi
â∗i
≈ − 4(ρi − ρi+1)

2

a2i (ρi + ρi+1)2

(
1− 5(ρi+1 − ρi)2

24a2i
ξ2 +O

(
ξ4
))

, (73)

and shows the errror term in ξ2. Other terms in the SRF equations showed similar
convergence without further complications. This is a rather strong result supporting
our definitions of the curvature and our SRF equation definition. More general con-
vergence calculations could be explored.

4.6 SRF: Singularities, Surgery, Stability and the Simplicial Diffeomorphisms

In this final report we have formulated a discrete form of the Hamilton RF equations
for a piecewise flat simplicial geometry for any dimension, d. We imagine that this
simplicial formulation of RF will provide new insights both numerically and, more
importantly, in representing the singularity and soliton structure on piecewise flat sim-
plicial lattices. It may be possible to use the RRF mathematics to explore singularity
structure in three and higher dimensions in novel ways [46]. Perhaps there are minimal
simplicial structures characterizing RF singularities of various types, in other words
we can ask, “Given a RF singularity (Type-1, Type-2 etc.), what is the simplest sim-
plicial lattice that exhibits this singularity?”

Hamilton demonstrated that the RF equations will, under certain conditions, evolve
to produce singularities [47]. He discussed some intuitive solutions for dumbbell ge-
ometries producing pinching singularities. For the RRF equations to produce a faithful
representation of Hamilton’s RF, the lattice geometry will need to evolve so as to prop-
erly approach these pinching singularities and then to avoid them by surgery [6, 47].
The analysis of such singularities using the RRF equations is one of the primary di-
rections guiding our current research. We are in the process of analyzing the dumbbell
model with 3-sphere topology to reproduce the recent results of [11, 12] using the RRF
equations. Our preliminary results demonstrate neck pinching, although more analysis
is necessary [45]. Once we demonstrate that the RRF equations reproduce quantita-
tively correct neck pinch singularity formation we will begin to examine a simplicial
implementation of surgery. This will involve separating the neck pinch into two sepa-
rate lattices and then generate an appropriate simplicial cap for each of these, thereby
continuing the RRF evolution to produce a connected sum of geometries. While we
are only beginning in this direction, we believe it possible, at least in 3-dimensions,
to produce an automated surgery procedure for a lattice geometry in order to produce
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a complete RF evolution to a connected sum of Thurston-type geometries for a broad
range of initial simplicial geometries and topologies [7].

We have begun a numerical implementation of the RRF equations in 3-dimensions on
3-sphere lattices [15]. In particular, we are currently analyzing the RRF of geometries
with 3-sphere topology with everywhere positive Ricci curvature [15]. In this analysis,
the initial simplicial geometry is a perturbation of the length of each of the 720 edges
of the 600-cell regular polytope about their regular values so as to keep theRc positive
everywhere. Hamilton proved that non-uniformities in such geometries will converge
to the regular 600-cell polytope exponentially fast [30] provided that the RRF faith-
fully reproduces continuum RF. We are also examining Type-1 and Type -2 singularity
formation in a simplicial representation of the dumbbell model [45, 48]. Our prelimi-
nary results for both models are qualitatively consistent uniformization; however, we
need to carefully examine the detailed exponential fast uniformization predicted by
Hamilton and to examine numerical behavior of the normalized RRF equations and
their stability/instability. For small perturbation around the 600-cell model we exam-
ined the 720 eigenvalues of the Jacobian for the RRF equations and we find numerous
positive real values indicating the well-known instability of the linearized RF equa-
tions about a 3-sphere geometry [15]. Examining the stability of the RRF equations
and providing suitable reformulations of these equations is the primary focus of our
research.

We are animated by three directions for this analysis. First, Perelman introduced a
gauge fixed (conformal and diffeomorphism) modified RF evolution by introducing
an entropy integral – an integral which produces uniformization via a gradient flow
[6]. We ask, “What is the simplicial analogue of this for a piecewise flat simplicial
lattice”? Second, an approximate simplicial diffeomorphism structure for a piecewise
flat simplicial geometry has been understood [49] and successfully implemented in
RC. This should enable us to examine a modified RRF equation using these approx-
imate diffeomorphic degrees of freedom in order to improve the uniformization of
the simplicial geometry (e.g. well-centered Delaunay lattices, maximally regular sim-
plexes, etc.). Finally, there are many similarities between RF and issues involved in
evolving black hole spacetimes that we believe can inform both fields of research.

The numerical solution of Hamilton’s RF equations in 3 and higher dimensions involve
much the same issues as the vacuum black hole solutions of the Einstein equations. In
fact, the Einstein equations for a vacuum spacetime is just the Ricci tensor. First,
Hamilton showed that one can encounter various singularities in RF which is also true
for the numerical evolution of black hole spacetimes. Secondly, our recent results
suggest that the RRF equations have instabilities in certain cases [15, 45] as do the
discretized version of the standard ADM equations in numerical relativity. Thirdly,
Hamilton suggested a surgery procedure in order to integrate through the neck pinch
singularities in much the same way as the moving puncture procedure or horizon ex-
cision procedure is used in numerical relativity to numerically evolve the spacetime
geometry avoid the black hole singularity. Finally, in general relativity one utilizes the
diffeomorphic degrees of freedom and conformal factors through the initial value data
as well as a judicious choice of the lapse and shift functions during evolution so as
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to provide a stable solution of Einstein’s equations that also avoids singularities (e.g.
constant mean curvature slicing and minimal shear). In a similar vein, Perelman’s en-
tropy function utilizes diffeomorphic and conformal modes to provide a gradient flow
for a modified RF equation. This suggests that experience gained in general relativity
may inform similar issues in the numerical analysis of RF, just as experience with RF
evolutions may offer insights into numerical relativity. We view this as an exciting
avenue of research that may bridge two disciplines.

4.7 Adiabatic Isometric Map: Applying SRF to Weyl’s 1916 Isometric Embed-
ding Theorem for Surfaces

This project supported the dissertation research of two graduate students from FAU,
one student from Stony Brook, and a postdoctoral fellow at Harvard University. One of
the graduate students at FAU (Shannon Ray) and postdoctoral fellow (Jonathan Mc-
Donald) applied SRF to define quasi-local mass of Wang and Yau. This required a
novel and efficient numerical implementation of the Weyl-Alexandrov isometric em-
bedding problem. The resulting Adiabatic Iscometric Map (AIM) approach utilized
SRF and has provided a robust solution to this problem [14].

Alexandrov proved that any simplicial complex homeomorphic to a sphere with strictly
non-negative Gaussian curvature at each vertex can be isometrically embedded in R3

as a convex polyhedron [50]. Due to the nonconstructive nature of his proof, there
have yet to be any algorithms that realizes the Alexandrov embedding in polynomial
time. Following his proof, we produced the adiabatic isometric mapping (AIM) algo-
rithm. Tests of AIM applied to two different polyhedral metrics indicate that its run
time is sub cubic with respect to the number of vertices.

Under this research we developed the adiabatic isometric mapping (AIM) algorithm
which is a numerical realization of Alexandrov’s proof for embedding convex polyhe-
dral metrics. Like D. Kane et. al [51] our algorithm produces approximately convex
polyhedrons which we will show are adequate solutions to Alexandrov’s embedding
problem. Taking techniques from the algorithms mentioned, AIM begins by applying
Ricci flow to a convex polyhedral metric. Next we embed the constant curvature sur-
face and uses it as the starting point for an embedding flow similar to M. Jasiulek and
M. Korzyński’s [52]. To step from one conformally related polyhedron to the next, we
use Newton’s method to minimize an objective function based on edge lengths of the
polyhedral metric and distances in R3. To avoid the problem of local minima found in
Bondarescu et. al [53], we use the coordinates of the constant curvature polyhedron as
the initial guess for Newton’s method. This puts us close enough to the solution so that
we quickly converge to the global minimum. We then use the newly embedded poly-
hedron as the initial value data for our next step. This is repeated until we reach the
original polyhedral metric. We also show that if our steps between surfaces are small
enough, we can reach a smooth polyhedron that adequately represents Alexandrov’s
polyhedron thus avoiding the problem of non-smooth solutions seen by H-P. Nollert
and H. Herold [54]. We found that AIM is capable of embedding with accuracy in
the edge lengths up to double precision. It is also capable of embedding non-convex
polyhedral metrics though we do not know the extent at which it is applicable.
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To navigate through the “sea of solutions” without resorting to constrained optimiza-
tion, AIM uses a three step procedure, (1) uniformization via SRF that provides a
dimensional reduction from 3 to 2 dimensions, (2) uniform surface embedding, and
(3) a pull-back of the coordinates from the uniformed surface to the original surface
via the backward adiabatic march (BAM). These three steps ameliorate many difficul-
ties in solving the system of equations and provide controllable criteria for obtaining
a suitable solution. We briefly describe these steps in the next three subections which
are illustrated in Fig. 7.

Figure 7: This figure visualizes the three steps of the AIM algorithm.

In Fig. 7 we illustrate the three steps of the AIM algorithm. The section entitled
uniformization via Ricci flow begins at ρ0 in the upper left corner and ends at ρtf in
the upper right corner. The uniform surface embedding begins at ρtf and ends at the
bottom right of the figure. Finally, the adiabatic backward march sections starts at Ptf
in the lower right corner and ends at P0 in the lower left corner of the figure.

We plan on using this to define quasi-local congestion on an embedded network geom-
etry. We will borrow the theoretical construction of Wang and Yau in their definition
of quasi-local mass in general relativity and apply this to the simplicial geometry of
an embedded network. Needed in this construction is a Hamiltonian for the embed-
ded network. Guiding this research is the widely accepted conjecture that curvature
is a measure of congestion and load balance in networks. While we are just at the
beginning of this research, we believe this holds promise to address one of the deepest
questions in complex networks: ”What is the normal state of the network?”

5 CONCLUSIONS

The work presented here proposes a novel approach to 3-manifold recognition. It
gives us a natural path for transitioning this research beyond this one-year exploratory
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project to the following milestones:

1. Couple SRF with persistent homology to identify singularity formation.

2. Develop a fully-efficient algorithm using SRF with surgery and diffeomorphism
to decompose simplicial 3-manifolds into a finite connected sum of their prime
components.

3. Develop quasi-local congestion and use this in PH as a filtration parameter to
identify, monitor and ameliorate abnormal states of a complex network.

4. Apply SRF to 3-geometries with boundary for applications extending domain of
combinatorial RF on 2-surfaces.
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7 LIST OF SYMBOLS, ABBREVIATIONS AND ACRONYMS

AIM Adiabatic Isometric Map
AFRL Air Force Research Laboratory
BAM Backward Adiabatic March
CRF Combinatorial Ricci Flow
DEC Discrete Exterior Calculus
FAU Florida Atlantic University
GT Geometrization Theorem
INFOCOM IEEE Conference on Computer Communications
PH Persistent Homology
PI Principle Investigator
PL Piecewise Linear
RC Regge Calculus
RF Ricci Flow
RI Information Directorate
RITC Emerging Computing Technology
SRF Simplicial Ricci Flow
SUNY State University of New York
UBC University of British Columbia
UG Undergraduate
US United States
UT Uniformization Theorem
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